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ABSTRACT

Design guidelines for lateral-torsional buckling of I-shaped steel beams have been well
established, but those of a composite beam consisting of an I-shaped beam and a floor slab
have not been sufficiently understood. It is especially true for a beam subjected to reverse
curvature bending, where the top flange is continuously restrained with a slab but the bottom
flange may still buckle laterally. Although several strength formulae have been derived, as far as
the authors know, the restraining effect is not widely considered as a common practice, partly
due to lack of behavioral data available. Therefore, in this study, three sub-assemblage
specimens consisting of two box steel columns, an I-shaped beam, and a composite floor slab
were tested to clarify the behavior. Then a closed-form buckling strength formula was derived
for the beam based on an energy method, and the results were compared with those of finite
element analyses and the test results. Overall, the restraining effects were clearly observed,
and the proposed formula was found to provide reasonable strength estimates.

INTRODUCTION

There has been a substantial amount of research work on lateral-torsional buckling (called LTB
hereafter) of I-shaped steel beams in steel building frames (Ziemian, 2010). Design guidelines
for the strength evaluation and its bracing have been well established. However, the strength
evaluation for a composite beam consisting of an I-shaped beam and a floor slab is not well
understood yet. It is especially true for a composite beam subjected to reverse curvature
bending, where the top flange is continuously restrained with a floor slab but the bottom flange
may still buckle laterally due to the compression stress. There would be an obvious benefit
especially in seismic design for eliminating bracing members when such a restraining effect of
the floor is considered in design. As a result, some strength evaluation formulae have been



proposed, such as those by Wakabayashi and Nakamura (1973), Bradford and Gao (1992),
Yura (1995), and Kimura and Yoshino (2011).

However, as far as the authors know, the restraining effect by the floor slab is not widely
considered as a common practice in design. This is partly because of the fact that enough
behavioral data on the interaction between the I-shaped beam and the floor slab are not
available, resulting in insufficient resources on the strength formulae. From this background, in
this study, three sub-assemblage specimens consisting of two box steel columns, an I-shaped
beam, and a reinforced concrete floor slab were first tested under horizontal loading applied to
the columns. Such a loading condition is typically seen in seismic design. Then, a formula for
closed-form elastic buckling strength for the restrained I-shaped steel beam under various
moment gradients was developed based on an energy method using newly proposed
displacement functions. Comparisons of results of elastic finite element buckling analyses, the
proposed formula, and a typical existing formula were made, and finally, the accuracy of the
proposed formula was examined with the experimental data.

OUTLINE OF EXPERIMENTS

Sub-assemblage specimens shown in Figure 1 were fabricated and tested under a horizontal
loading condition typically encountered in strong seismic and/or wind regions. The specimens
were designed as a part of a moment-resisting frame seen in Japan, consisting of two square
box columns, an I-shaped beam, and a reinforced concrete floor slab. The box columns were
made of cold-formed (roll-formed) steel and have a length of 1620 mm and a square section
with 300 mm width and 16 mm thickness. An I-shaped beam with a length of 5700 mm was
welded rigidly to the columns at both its ends. At the beam—column connections, reinforcement
was made with continuity plates between the beam flanges and the columns so that rigid
connection can be realized. The floor slab above the beam was of reinforced concrete with 70
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mm thickness and 2000 mm width. A
flat-type form deck was set beneath the

Table 1 — Specimens and their beam sizes

floor for concrete casting. Headed steel , , Web Flange
studs with 10 mm in diameter and 50 Specimen no.|Depth (mm) | Width (mm)| thickness | thickness
mm in length were welded at the (mm) (mm)
middle of the top flange. Following No.1 >0 150 9 12
Japanese practice, the studs were No.2 500 116 9 12
arranged with a spacing of 200 mm in a No.3 500 e o 12

row along the entire steel beam, which

provides about one-half of the full composite action required by the AISC specification. From
strong restraints by the continuity plates, columns and floor slab, it can be assumed that both
twisting and warping were substantially restrained at the beam ends.

There were three specimens (Specimens No. 1 through No. 3). The experimental variable was
straightforward and was only the width of the beam that significantly affects the LTB behavior.
The width changed from 65 mm to 150 mm, while the height, flange thickness, and web
thickness remained constant in all specimens. Geometry information for the specimens is
shown in Table 1. As understood from information in the table, all the sections were categorized
into a compact section. The beams were built-up sections, and the yield strengths of the steel
plates used for the flange and web were 360 N/mm? and 382 N/mm?, respectively. Based on a
widely used Japanese design standard, strength estimates of the steel beams without the floor
slab were 0.64M ;, 0.41M,, and 0.17M, for Specimens No. 1 through No. 3, respectively, where
M, is the plastic moment. As seen, no specimens would reach M if the slab restraining effect
was not taken into account.

The test set-up is shown in Figure 2. The top and bottom parts of the two columns were pin-
supported and two horizontal actuators were located at the top of the columns, which gave an
equal displacement in the same direction. The loading provided by the actuators was controlled
by displacement and the following protocol was applied: two cycles of loading at 0.5% drift angle
and then monotonically increasing loading until an obvious buckling was observed.

EXPERIMENTAL RESULTS AND OBSERVATIONS

Load and displacement relationships are shown in Figure 3. The load is represented by bending
moment M that acts at the ends of the beam, and the displacement is represented by the story
drift angle o, which is defined by an inclination between the upper and lower pin-supports of the
columns. Since composite beams behaved differently in positive and negative bending, both

ya Reaction flame

1N
===

Actuator,~ Load cell

Pin supphs=

Floor slab
p

£ Lateral s

Lateral sippg
|
1 pantogrj:)h pantogra

\_ =
, \_ I-shaped steel beam Load cell
Reaction - Box column i
column E Pin support - & P et

|| ] % - Roller Buppprt
I 1} {1 | )

i f " = 1
! 6000 |

pPa

F—1040—+—1040—~

I

Fig. 2 — Test set-up and loading condition



relationships at positive and negative sides are shown in Figure 3. The average relationships
are also indicated in the same figures with finer broken lines. From the average relationships, it
can be said that the specimens were quite ductile and relatively similar to each other. They
started with elastic behavior, reached the maximum strength, and then showed yielding without
much strength deterioration. The figure also indicates that both stiffness and strength were
apparently larger in positive bending side than in negative side because of the composite action.
In the three specimens, no buckling and cracking were observed in the slabs at the cyclic
loading of 0.5% drift angle.
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Fig. 3 — Load-displacement relationships
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Fig. 4 —Buckling deformation observed at the negative bending side

Each specimen’s behavior is described as follows: Specimen No. 1 having the widest flange
showed an obvious load drop at a drift angle of around 1.9% due to concrete crushing of the
slab around the column face at the positive side. Subsequently, flange local buckling occurred
at a drift angle of about 2.5% as seen in Figure 4 (a), but little strength deterioration was
observed until the loading was terminated. LTB did not occur in this case, instead, local flange
buckling was identified as in Figure 4 (a). Specimen No. 2 showed a similar load—displacement
relationship to that of Specimen No. 1. After concrete crushing was observed, buckling occurred
at a drift angle of around 2.4% with LTB and slight flange local buckling as shown in Figure 4 (b).
The last specimen, Specimen No. 3 also showed concrete crushing at the positive bending side
and a clear LTB at a smaller drift angle of around 1.9% than those of the previous two
specimens. Although concrete crushing of the floor slabs was observed in all the specimens,
obvious damage was not identified around the stud connections, as seen in Figure 5.



Through the behaviors of the three specimens shown in Figure 4, it is clear that the top flange of
the steel beam was completely restrained at least laterally. This demonstrated that the floor
slabs had enough capability to restrain the lateral movement of the steel beams, even though
the beams were not fully composite. Plastic moment strengths M, are shown with horizontal
broken lines in Figure 3, indicating that for all the specimens, the maximum strengths of the
beams in the negative bending side were found around their plastic moment strengths. The
strengths were 1.06M,, 1.00M;, and 0.91M, for Specimens No. 1 through No. 3, respectively.
Compared with the previously indicated strength estimates for those without a floor slab,
substantial strength increases were found especially in Specimens No. 2. and No. 3. These
observations indicate that floor slabs possess considerably strong restraining effects on the LTB
of the I-shaped steel beams.

(a) Concrete crushing around the columns (b) Appearance around the studs

Fig. 5 — Damage and appearance observed in and around reinforced concrete slab

EXISTING STRENGTH FORMULA

Various design formulae for LTB of I-shaped beams have been proposed. All the formulae are
established primarily as a function of plastic moment strength M, and elastic bucking strength
M., . For the cases where the top flange is continuously restrained with a floor slab, as seen in
the previous experiments, several LTB formulae have been proposed; for example by
Wakabayashi and Nakamura (1973), Bradford and Gao (1992), Yura (1995), and Kimura and
Yoshino (2011). Most of the formulae are developed based on governing differential equations
or the equivalent energy equation, but their derivation is so complex that the closed-from
solution is rarely possible. Therefore, existing formulae are rather approximate, established
based on numerical analysis.

Among the formulae, widely recognized is the one adopted in the AISC specification (AISC,
2010), which is originally proposed by Yura (Yura, 1995). It provides the following elastic
buckling strength M, :

Mecr= Cb Mcro (1)

where M., is the elastic buckling strength for uniform bending moment, and C, is the LTB
modification factor for non-uniform moment including reverse curvature bending:

2(M1)_8 McL
Cb=3.0—(j— e 2
3 (Mo 3{(M0+M1)} )
where M, is the moment at the end of the unbraced length, which gives the largest compressive
stress in the bottom flange, M,is the moment at the other end of the length, and M, is the

*

moment at the middle of the length. Note that in Eqn. (2) that (M, +M,) =M, if M, is positive.



To obtain the design strength M, , the elastic buckling strength M. is applied to design
equations given in the AISC specification.

PROPOSED CLOSED FORM STRENGTH FORMULA

Since the existing formulae for the buckling are approximate, there might be some errors in the
strength estimation. As far as the authors know, no closed-form solution is currently available for
the elastic LTB strength of an I-shaped steel beam restrained by a floor slab. This is because
the equation becomes so complex that only numerical solutions can solve the problem.

A closed-form solution is derived in this study based on an energy method (Rayleigh-Ritz
method) by assuming rather untraditional displacement functions. Figure 6 shows a stability
problem of simply supported doubly symmetric I-shaped beam whose top flange is continuously
restrained laterally (a sign “X” means the lateral restraint). The beam is subjected to arbitrary
end moments, where g is introduced as a parameter to express various moment gradients. At
the middle of the top flange, the lateral displacement is continuously restrained, while the twist
rotation is free to move. Two types of end restraint conditions are considered: torsional simple
support and fixed support conditions. Composite action with floor slab is neglected.

Note on this model in Figure 6 that Bradford and Gao (1992) assumed a laterally and torsionally
fixed condition at the top flange, resulting in what they called “lateral-distortional buckling.” Since
it is still uncertain from a practical Al p
viewpoint whether the torsionally M s e s oL (1-pM \L
fixed condition is assumed, this K X u
study employs only a laterally fixed C 7e—o )

condition, which is in most cases % X }g
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where E is Young's modulus, G is the shear modulus, Iy is the moment of inertia about the
weak axes, J is the torsional constant, C, is the warping constant, L, is the unbraced length
as shown in Figure 6, M, is the bending moment along the beam, and u and ¢ are the
horizontal displacement and twist rotation at the centroid of the beam, respectively. Neglecting
the sectional distortion of the beam, the following relationship can be assumed:

_ %
=24 4

where d, is the distance between the centers of the flanges. Referring to Figure 6, M, can be
expressed at a location of z as follows:

o

Substituting Eqgns. (4) and (5) into Eqgn. (3), the total potential energy becomes as follows:

1 db 272’ E|yf db
2L,

1= B+ Ad——M{l B A+ C} (6)

Lb b



where 1 is the moment of inertia for one flange. Note that an approximate relationship of
Iy =21y is used in the derivation from Eqgn. (3). A, B and c in Egn. (6) are functionals of ¢
shown as follows:

L L .1 L
A=l #%dy, B[ Tefdy. c=[ P2y (7. (8. (9

As seen in Figure 6, ¢ is the only variable to describe the buckled displacement field. Here, ¢ is
expressed with the following finite series such that the given boundary conditions are satisfied:

¢=ag + Z an ¢y (10)

n=1

where a; and a, are arbitrary constants, ¢, is the base function, and n is the number of series.
Generally, the Fourier series have been applied to Eqn. (10), but in this study, rather special
functions are applied to make the closed-form solutions possible. The functions were found
through try and error, and are shown for two end restraint conditions against LTB as follows:

n
@, =sin { (Lij } for torsional simple support (no twist, free to warp) (12)
b

n
, = COS {272 (Li} } for torsional fixed support (no twist and no warping) (12)
b

With the above functions, enough accuracy can be obtained using only three series, i.e., n =3,
whereas the number of series is considerably larger with traditional Fourier series, especially for
the cases with various moment gradients. This large number of series has made the closed-
form solutions quite difficult. The proposed displacement functions can describe the buckled
shape more efficiently. Substituting Egn. (10) into Eqn. (6) and applying a stationary condition in
terms of a, to Eqn. (6), a cubic equation in terms of M can be obtained as an eigenvalue
problem. By solving the equation, the following closed-form elastic buckling strength M_, can be
found:

Mg =min{M %, ML M2 (13)
where
q aY (pY q aY’  (p) Az
oo A o T veone
2 2 3 2 2 3 3
g =031, wy= Vg, STV (15), (16), (17)
1 1 2 aj
p=A1—§A22' q:AO—§A1A2+EA22, Aj:a—3 (18), (19), (20)

hi1 hip hyg
apg=|hp1 hg hos (21)
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011 912 93| [h1r hio hgg| |hir hyp hyg
ap=|hy hypy hag|+|021 922 Go3|+|ha1 hyp hos (22)
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9nm =@=B)Lnm + B Nop (25)
27%Ely GJ
hnm:_Mnm—zdb_l-nmd_ (26)
Lb b
b o, Lo’ (b,
Lom =Lp IO $n ¢m dz, Mnm =_2ﬂ_2 _[0 #n I dz (27), (28)
Ly .,
N m :-[O Z ¢y Py dz (29)

Applying the displacement functions in Eqgns. (11) and (12), Lyy, My, &and N, become
constants by utilizing partial integration technique and numerical integration. Tables 2 and 3
show the values of L,,, M,,, and N, for simple support case and fixed support case,
respectively.

Table 2 — Values of L, Mp,, and N, for torsional simple support

n=1m=1 n=2, m=2 n=3, m=3 n=1, m=2 n=1, m=3 n=2, m=3
Lom 4.935 6.310 8.589 3.799 2.750 6.667
Mom 2.467 9.329 26.33 1.899 1.375 13.49
Nirm 2.467 4.935 7.402 2.802 2.489 5.604

Table 3 — Values of L, M,,,and N, for torsional fixed support

n=1, m=1 n=2, m=2 n=3, m=3 n=1, m=2 n=1, m=3 n=2, m=3
Lom 19.74 26.75 35.96 9.224 -0.2315 23.93
Mnm 39.48 128.8 362.8 18.45 -0.4629 165.7
Nrm 9.870 19.74 29.61 6.763 1.077 19.21

Eqn. (14) is known as Cardano’s formula, which provides three roots. They may take real
numbers and/or complex numbers, depending on the value of the discriminant
D=(q/2)?+(p/3)3. Since the real roots are meaningful, their minimum value becomes the
solution for Egn. (13), which is the buckling strength M_, . Although the solution is expressed in a
closed-form, rather bothersome calculation work is needed.



ACCURACY OF PROPOSED FORMULA

The accuracies of the proposed
strength formula and Yura's formula
were examined by comparing elastic
finite element buckling analysis (i.e.,
eigenvalue analysis). Note that the
comparisons made here is on elastic
buckling strength, and the inelastic
strength will be discussed later in
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element (FE) model of simply
supported I-shaped beam with end
moments and shearing forces with
the top flange continuously
restrained horizontally at the middle
of the flange. Variables considered in
the analyses included the beam end
support condition for LTB, beam size,
beam length L, , and moment
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Fig. 7 — Finite element analysis model

Table 4 — Beam sizes considered in the analyses

gradient defined by p. There were

two end restraint conditions: one is Web Flange
torsional simple support (only sway is Beam type [Depth (mm)|Width (mm)| thickness | thickness
restrained) and another is torsional (mm) (mm)
fixed support (both sway and warping Case 1 400 400 13 21
are prevented). These end restraint Case 2 588 300 12 20
conditions were made possible by Case 3 600 200 11 17

discrete restraints given at the
centroids of the sections and rigid-bar addition along the sections at the beam ends. Note that
as mentioned previously, the fixed support case may correspond to the experiments conducted
in this study. The beam sizes considered here is shown in Table 4. Three types of beams with
different widths and depths were taken into consideration. The beam length L, was varied such
that L,/H (H is the beam depth) changes from 6 to 100 at an interval of 2. Four types of
moment gradients were also considered by taking gequal to 0, 1, 2, and 3. In these moment
gradients, g = 2 corresponds to an equal end moment and a double curvature bending case
that is typically seen in seismic design. By combining all the variables, more than 500 cases of
buckling analyses were carried out to obtain a database for the critical buckling strengths Mgg), -

Figure 8 shows comparisons between the FE analyses and the proposed formula given by Eqn.
(13). Both simple and fixed cases are shown in Figure 8 (a) and (b), respectively. In the figure,
the horizontal axis represents the non-dimensional slenderness ratio defined by /M /M ,
where M, is the plastic moment strength and M., is the calculated buckling strength given by
Eqgn. (13). Yield strength of the steel beams was assumed to be F, =325 N/mm?. On one hand,
the vertical axis shows the ratio of calculated strength to plastic moment strength for the FE
analysis and the proposed formula. The ratios for the FE results and the proposed formula are
expressed as Mggy /M, and M. /M, and are shown in the graphs with a small circles and a
broken line, respectively. When both circles and line are closely situated, it indicates that the
proposed formula has good accuracy. Keeping in mind this basis for evaluation, the proposed
formula provides good overall strength estimates. Note that in Figure 8 (a), there is some scatter
in the smaller ‘/Mp/M; region. This is possibly caused by LTB and web shear buckling
interaction, which was not directly considered in the proposed formula.
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Fig. 9 — Comparison between AISC formula (Yura’s formula) and FE analyses

On the other hand, regarding the AISC formula (Yura’s formula) given in Eqn. (1), comparisons
with the FE analyses are made in Figure 9. Note that Yura’s formula was provided primarily for
torsional simple support condition, but in this comparison, an effective length factor of 0.5 was
applied as an attempt to the torsional fixed support case. Overall, Yura’'s formula provided
conservative strength estimates, but relatively wider scatter was observed for some cases.
Although relatively good approximation was provided for uniform bending moment cases, larger
scatter was found especially in the cases where the moment gradient was larger (i.e., g was
larger), the depth of the steel beam became smaller, and the length of the beam was longer. It
is interesting to note that smaller depth and larger length conditions corresponded to the cases
where uniform torsion resistant became dominant in comparison with warping torsion resistance.
The larger scatter might be caused by the fact that Yura’'s formula was approximate based on
limited numerical solutions. It should be noted that Yura’'s formula slightly overestimated the
cases with g = 3, the largest moment gradient in the calculations. Overall, Figures 8 and 9 show
that the proposed formula provided better accuracy than Yura's formula.



COMPARISON BETWEEN PROPOSED FORMULA AND EXPERIMENTAL RESULTS

Since the proposed LTB formula only provided elastic strength, design equations (mapping
functions) were needed to consider the effects of inelastic behavior and initial imperfections.
Generally, such equations are described as functions of plastic moment, elastic buckling
strength and slenderness ratio. In the AISC specification, which is the most widely recognized
formula, the unbraced length L, was used to represent the slenderness ratio. In the proposed
buckling formula, however, one might notice that the elastic buckling strength M. was not
explicitly expressed as a function of L,. Therefore, the AISC design equations cannot directly
be used for the proposed formula. Based on a Japanese design standard, the following
equations were proposed as functions of non-dimensional slenderness ratio 4, =./M /M

(@) When 4, < 4p:

Mp=M, (30)
(b) When 2, <2, < A
« [, A —Ap
Mn—[l OA%—%JMF’ (31)
where

Jp =M p/Mer e =y/1/06, 2, =06 (32), (33), (34)

(c) When 4, > 1,:
M, =M (35)
In the above equations, M, is the design buckling strength considering the inelastic behavior of
the beam. Ap is the slenderness ratio where M. reaches M b and 4, is the ratio of a transition
point between elastic and inelastic buckling. The value of 0.6 for 2, was assumed on the basis
of material and geometrical non-linear buckling analyses separately conducted.

Figure 10 shows a comparison between the experimental data and the design equations given
in Egns. (30) through (35). The horizontal axis represents the non-dimensional slenderness ratio,
where M, is given by the proposed formula of Egn. (13). The vertical axis represents the
strength normalized by plastic moment, where the strength is given by the experiments or the
above equations. In Figure 10, elastic buckling

strength shown in Egn. (13) is also indicated as 1.4 T
a reference. In calculating M, , the fixed support 12 \
condition was applied by using Table 3 and the ' No.1 \ ) ‘\
moment gradient parameter g was assumed to 1.0 ° o —No. 3
be 2, corresponding to a double curvature and ~_ [
an equal end moment condition. Note that < 0.8 NN
setting an appropriate g is relatively difficult s 0.6 \\\
because of the beam composite action seen in ' N
positive bending. Based on the calculated 0.4 H —Eqns. (30) to (35) ~.
stresses of the bottom flanges at both ends of ---Eqn. (13)
the composite beam, p=2 was approximately 0.2 M ® Experiment
. . . periments
assumed for a comparison with the experiments. 0.0 x I L I
As seen in the figure, the design equations are 02 04 06 08 10 12 14 16
on the safe side against the experimental results, Ap

providing with relatively good estimates for Fig. 10 — Accuracy of the proposed formula



Specimens No. 1 and No. 2, and with a conservative estimate for Specimen No. 3. This
conservative estimate may be explained possibly by the following two reasons: One is an
additional effect from the rotational restraint at the top of the flange. As seen in Figure 6, the
rotational restraint was conservatively neglected in the model. The other is the moment gradient
definition for a composite beam. As stated previously, g= 2 was assumed in calculating M, ,
but the actual gradient subjected to the steel beam might become larger, resulting in some
strength increase. Note that the AISC (Yura’s) formula is not shown together in Figure 10,
because the torsional fixed support condition seemed to be out of scope for the AISC design
equations. Therefore, a comparison of elastic

buckling strength with the same end condition and Table 5 — Accuracy of Yura's formula

moment gradient as those in Figure 10 was made in . Yura's Proposed

Table 5 between Yura's and the proposed formulae. Specimen no. Mer IMp Mrer IMp

Yura’s formula provided conservative elastic

strength estimates. No.1 3.26 3.84
No.2 1.89 2.18
No.3 0.63 0.68

CONCLUSIONS

This study aimed to clarify the behavior and design of LTB of an I-shaped steel beam with the
top flange continuously restrained laterally using a reinforced concrete floor slab and headed
studs. Three sub-assemblage specimens having different flange widths were first tested under
horizontal loading applied to the columns. The loading condition was reverse curvature and
equal end moment, which is typically seen in seismic design. Through the experiments, it was
shown that the floor slab effectively restrained the flexural-torsional buckling for all the cases.
An elastic buckling strength formula was then derived for the restrained steel beam based on an
energy approach. New displacement functions were introduced so that a closed-form formula
was made possible. In comparison with finite element analyses, the accuracy of the proposed
formula together with that of the existing AISC formula (Yura’'s formula) was examined. The
comparisons indicated that the proposed formula provided good accuracy while the existing
AISC formula had a relatively large scatter for some cases. Finally, the proposed formula was
compared with experimental results. In doing so, new design equations to consider the inelastic
effect were proposed. The comparison showed that the proposed equations provided
reasonably accurate and conservative strength estimates to the experimental results.
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