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ABSTRACT  
Design guidelines for lateral–torsional buckling of I-shaped steel beams have been well 
established, but those of a composite beam consisting of an I-shaped beam and a floor slab 
have not been sufficiently understood. It is especially true for a beam subjected to reverse 
curvature bending, where the top flange is continuously restrained with a slab but the bottom 
flange may still buckle laterally. Although several strength formulae have been derived, as far as 
the authors know, the restraining effect is not widely considered as a common practice, partly 
due to lack of behavioral data available. Therefore, in this study, three sub-assemblage 
specimens consisting of two box steel columns, an I-shaped beam, and a composite floor slab 
were tested to clarify the behavior. Then a closed-form buckling strength formula was derived 
for the beam based on an energy method, and the results were compared with those of finite 
element analyses and the test results. Overall, the restraining effects were clearly observed, 
and the proposed formula was found to provide reasonable strength estimates. 

 

INTRODUCTION 
There has been a substantial amount of research work on lateral–torsional buckling (called LTB 
hereafter) of I-shaped steel beams in steel building frames (Ziemian, 2010). Design guidelines 
for the strength evaluation and its bracing have been well established. However, the strength 
evaluation for a composite beam consisting of an I-shaped beam and a floor slab is not well 
understood yet. It is especially true for a composite beam subjected to reverse curvature 
bending, where the top flange is continuously restrained with a floor slab but the bottom flange 
may still buckle laterally due to the compression stress. There would be an obvious benefit 
especially in seismic design for eliminating bracing members when such a restraining effect of 
the floor is considered in design. As a result, some strength evaluation formulae have been 



 

proposed, such as those by Wakabayashi and Nakamura (1973), Bradford and Gao (1992), 
Yura (1995), and Kimura and Yoshino (2011).  

However, as far as the authors know, the restraining effect by the floor slab is not widely 
considered as a common practice in design. This is partly because of the fact that enough 
behavioral data on the interaction between the I-shaped beam and the floor slab are not 
available, resulting in insufficient resources on the strength formulae. From this background, in 
this study, three sub-assemblage specimens consisting of two box steel columns, an I-shaped 
beam, and a reinforced concrete floor slab were first tested under horizontal loading applied to 
the columns. Such a loading condition is typically seen in seismic design. Then, a formula for 
closed-form elastic buckling strength for the restrained I-shaped steel beam under various 
moment gradients was developed based on an energy method using newly proposed 
displacement functions. Comparisons of results of elastic finite element buckling analyses, the 
proposed formula, and a typical existing formula were made, and finally, the accuracy of the 
proposed formula was examined with the experimental data.  

 
OUTLINE OF EXPERIMENTS 
Sub-assemblage specimens shown in Figure 1 were fabricated and tested under a horizontal 
loading condition typically encountered in strong seismic and/or wind regions. The specimens 
were designed as a part of a moment-resisting frame seen in Japan, consisting of two square 
box columns, an I-shaped beam, and a reinforced concrete floor slab. The box columns were 
made of cold-formed (roll-formed) steel and have a length of 1620 mm and a square section 
with 300 mm width and 16 mm thickness. An I-shaped beam with a length of 5700 mm was 
welded rigidly to the columns at both its ends. At the beam–column connections, reinforcement 
was made with continuity plates between the beam flanges and the columns so that rigid 
connection can be realized. The floor slab above the beam was of reinforced concrete with 70 

        
(a) Side view (A-A' section) 

        
(b) Plan view 

Fig. 1 – Specimen overview 
 



 

mm thickness and 2000 mm width. A 
flat-type form deck was set beneath the 
floor for concrete casting. Headed steel 
studs with 10 mm in diameter and 50 
mm in length were welded at the 
middle of the top flange. Following 
Japanese practice, the studs were 
arranged with a spacing of 200 mm in a 
row along the entire steel beam, which 
provides about one-half of the full composite action required by the AISC specification. From 
strong restraints by the continuity plates, columns and floor slab, it can be assumed that both 
twisting and warping were substantially restrained at the beam ends.  

There were three specimens (Specimens No. 1 through No. 3). The experimental variable was 
straightforward and was only the width of the beam that significantly affects the LTB behavior. 
The width changed from 65 mm to 150 mm, while the height, flange thickness, and web 
thickness remained constant in all specimens. Geometry information for the specimens is 
shown in Table 1. As understood from information in the table, all the sections were categorized 
into a compact section. The beams were built-up sections, and the yield strengths of the steel 
plates used for the flange and web were 360 N/mm2 and 382 N/mm2, respectively. Based on a 
widely used Japanese design standard, strength estimates of the steel beams without the floor 
slab were pM64.0 , pM41.0 , and pM17.0  for Specimens No. 1 through No. 3, respectively, where 

pM  is the plastic moment. As seen, no specimens would reach pM  if the slab restraining effect 
was not taken into account.  

The test set-up is shown in Figure 2. The top and bottom parts of the two columns were pin-
supported and two horizontal actuators were located at the top of the columns, which gave an 
equal displacement in the same direction. The loading provided by the actuators was controlled 
by displacement and the following protocol was applied: two cycles of loading at 0.5% drift angle 
and then monotonically increasing loading until an obvious buckling was observed. 

 

EXPERIMENTAL RESULTS AND OBSERVATIONS 
Load and displacement relationships are shown in Figure 3. The load is represented by bending 
moment M  that acts at the ends of the beam, and the displacement is represented by the story 
drift angle θ , which is defined by an inclination between the upper and lower pin-supports of the 
columns. Since composite beams behaved differently in positive and negative bending, both 

Table 1 – Specimens and their beam sizes 

 

Specimen no. Depth (mm) Width (mm)
Web

thickness
(mm)

Flange
thickness

(mm)

No.1 500 150 9 12
No.2 500 116 9 12

No.3 500 65 9 12

 
Fig. 2 – Test set-up and loading condition 

 

 



 

relationships at positive and negative sides are shown in Figure 3. The average relationships 
are also indicated in the same figures with finer broken lines. From the average relationships, it 
can be said that the specimens were quite ductile and relatively similar to each other. They 
started with elastic behavior, reached the maximum strength, and then showed yielding without 
much strength deterioration. The figure also indicates that both stiffness and strength were 
apparently larger in positive bending side than in negative side because of the composite action. 
In the three specimens, no buckling and cracking were observed in the slabs at the cyclic 
loading of 0.5% drift angle.  

   
(a) Specimen No. 1 (b) Specimen No. 2 (c) Specimen No. 3 

Fig. 3 – Load–displacement relationships 

   
(a) Specimen No. 1 (b) Specimen No. 2 (c) Specimen No. 3 

Fig. 4 –Buckling deformation observed at the negative bending side 

Each specimen’s behavior is described as follows: Specimen No. 1 having the widest flange 
showed an obvious load drop at a drift angle of around 1.9% due to concrete crushing of the 
slab around the column face at the positive side. Subsequently, flange local buckling occurred 
at a drift angle of about 2.5% as seen in Figure 4 (a), but little strength deterioration was 
observed until the loading was terminated. LTB did not occur in this case, instead, local flange 
buckling was identified as in Figure 4 (a). Specimen No. 2 showed a similar load–displacement 
relationship to that of Specimen No. 1. After concrete crushing was observed, buckling occurred 
at a drift angle of around 2.4% with LTB and slight flange local buckling as shown in Figure 4 (b). 
The last specimen, Specimen No. 3 also showed concrete crushing at the positive bending side 
and a clear LTB at a smaller drift angle of around 1.9% than those of the previous two 
specimens. Although concrete crushing of the floor slabs was observed in all the specimens, 
obvious damage was not identified around the stud connections, as seen in Figure 5.  
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Through the behaviors of the three specimens shown in Figure 4, it is clear that the top flange of 
the steel beam was completely restrained at least laterally. This demonstrated that the floor 
slabs had enough capability to restrain the lateral movement of the steel beams, even though 
the beams were not fully composite. Plastic moment strengths pM  are shown with horizontal 
broken lines in Figure 3, indicating that for all the specimens, the maximum strengths of the 
beams in the negative bending side were found around their plastic moment strengths. The 
strengths were pM06.1 , pM00.1 , and pM91.0  for Specimens No. 1 through No. 3, respectively. 
Compared with the previously indicated strength estimates for those without a floor slab, 
substantial strength increases were found especially in Specimens No. 2. and No. 3. These 
observations indicate that floor slabs possess considerably strong restraining effects on the LTB 
of the I-shaped steel beams. 

  
(a) Concrete crushing around the columns (b) Appearance around the studs 

Fig. 5 – Damage and appearance observed in and around reinforced concrete slab 
 

EXISTING STRENGTH FORMULA 
Various design formulae for LTB of I-shaped beams have been proposed. All the formulae are 
established primarily as a function of plastic moment strength pM and elastic bucking strength 

crM . For the cases where the top flange is continuously restrained with a floor slab, as seen in 
the previous experiments, several LTB formulae have been proposed; for example by 
Wakabayashi and Nakamura (1973), Bradford and Gao (1992), Yura (1995), and Kimura and 
Yoshino (2011). Most of the formulae are developed based on governing differential equations 
or the equivalent energy equation, but their derivation is so complex that the closed-from 
solution is rarely possible. Therefore, existing formulae are rather approximate, established 
based on numerical analysis.  

Among the formulae, widely recognized is the one adopted in the AISC specification (AISC, 
2010), which is originally proposed by Yura (Yura, 1995). It provides the following elastic 
buckling strength crM : 

0crbcr MCM =           (1) 

where 0crM  is the elastic buckling strength for uniform bending moment, and bC is the LTB 
modification factor for non-uniform moment including reverse curvature bending: 
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where oM is the moment at the end of the unbraced length, which gives the largest compressive 
stress in the bottom flange, 1M is the moment at the other end of the length, and CLM  is the 
moment at the middle of the length. Note that in Eqn. (2) that ( ) oo MMM =+ *

1 , if 1M  is positive. 



 

To obtain the design strength nM , the elastic buckling strength crM  is applied to design 
equations given in the AISC specification.  

 

PROPOSED CLOSED FORM STRENGTH FORMULA 
Since the existing formulae for the buckling are approximate, there might be some errors in the 
strength estimation. As far as the authors know, no closed-form solution is currently available for 
the elastic LTB strength of an I-shaped steel beam restrained by a floor slab. This is because 
the equation becomes so complex that only numerical solutions can solve the problem.  

A closed-form solution is derived in this study based on an energy method (Rayleigh-Ritz 
method) by assuming rather untraditional displacement functions. Figure 6 shows a stability 
problem of simply supported doubly symmetric I-shaped beam whose top flange is continuously 
restrained laterally (a sign “X” means the lateral restraint). The beam is subjected to arbitrary 
end moments, where β  is introduced as a parameter to express various moment gradients. At 
the middle of the top flange, the lateral displacement is continuously restrained, while the twist 
rotation is free to move. Two types of end restraint conditions are considered: torsional simple 
support and fixed support conditions. Composite action with floor slab is neglected.  

Note on this model in Figure 6 that Bradford and Gao (1992) assumed a laterally and torsionally 
fixed condition at the top flange, resulting in what they called “lateral-distortional buckling.” Since 
it is still uncertain from a practical 
viewpoint whether the torsionally 
fixed condition is assumed, this 
study employs only a laterally fixed 
condition, which is in most cases 
conservative for strength evaluation. 

Back to the formulation, the total 
potential energy is described as 
follows (Trahair, 1993): 

 dzuMdzECdzGJdzuEI bbbb L
z

L
w

LL
y ∫∫∫∫ ′′+′′+′+′′=

00
2

0
2

0
2

2
1

2
1

2
1 φφφΠ    (3) 

where E  is Young’s modulus, G  is the shear modulus, yI  is the moment of inertia about the 
weak axes, J  is the torsional constant, wC  is the warping constant, bL  is the unbraced length 
as shown in Figure 6, zM  is the bending moment along the beam, and u and φ  are the 
horizontal displacement and twist rotation at the centroid of the beam, respectively. Neglecting 
the sectional distortion of the beam, the following relationship can be assumed: 

 φ
2
bdu =           (4) 

where bd  is the distance between the centers of the flanges. Referring to Figure 6, zM  can be 
expressed at a location of z  as follows: 
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Substituting Eqns. (4) and (5) into Eqn. (3), the total potential energy becomes as follows: 
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Fig. 6 – Restrained I-shaped beam with end moments 



 

where yfI  is the moment of inertia for one flange. Note that an approximate relationship of 
yfy II 2=  is used in the derivation from Eqn. (3). A , B  and C  in Eqn. (6) are functionals of φ

shown as follows: 
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As seen in Figure 6, φ  is the only variable to describe the buckled displacement field. Here, φ  is 
expressed with the following finite series such that the given boundary conditions are satisfied: 
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where 0a  and na  are arbitrary constants, nφ  is the base function, and n  is the number of series. 
Generally, the Fourier series have been applied to Eqn. (10), but in this study, rather special 
functions are applied to make the closed-form solutions possible. The functions were found 
through try and error, and are shown for two end restraint conditions against LTB as follows: 
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With the above functions, enough accuracy can be obtained using only three series, i.e., 3=n , 
whereas the number of series is considerably larger with traditional Fourier series, especially for 
the cases with various moment gradients. This large number of series has made the closed-
form solutions quite difficult. The proposed displacement functions can describe the buckled 
shape more efficiently. Substituting Eqn. (10) into Eqn. (6) and applying a stationary condition in 
terms of na  to Eqn. (6), a cubic equation in terms of M can be obtained as an eigenvalue 
problem. By solving the equation, the following closed-form elastic buckling strength *

crM  can be 
found: 

 { }210* ,,min MMMMcr =         (13) 
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Applying the displacement functions in Eqns. (11) and (12), nmL , nmM , and nmN  become 
constants by utilizing partial integration technique and numerical integration. Tables 2 and 3 
show the values of nmL , nmM , and nmN  for simple support case and fixed support case, 
respectively. 

Table 2 – Values of nmL , nmM , and nmN  for torsional simple support  

 n =1, m=1 n=2, m=2 n=3, m=3 n=1, m=2 n=1, m=3 n=2, m=3 

Lnm 4.935 6.310 8.589 3.799 2.750 6.667 

Mnm 2.467 9.329 26.33 1.899 1.375 13.49 

Nnm 2.467 4.935 7.402 2.802 2.489 5.604 

 

Table 3 – Values of nmL , nmM , and nmN  for torsional fixed support 

 n=1, m=1 n=2, m=2 n=3, m=3 n=1, m=2 n=1, m=3 n=2, m=3 

Lnm 19.74 26.75 35.96 9.224 -0.2315 23.93 

Mnm 39.48 128.8 362.8 18.45 -0.4629 165.7 

Nnm 9.870 19.74 29.61 6.763 1.077 19.21 

 
Eqn. (14) is known as Cardano’s formula, which provides three roots. They may take real 
numbers and/or complex numbers, depending on the value of the discriminant 

( ) ( )32 3/2/ pqD += . Since the real roots are meaningful, their minimum value becomes the 
solution for Eqn. (13), which is the buckling strength *

crM . Although the solution is expressed in a 
closed-form, rather bothersome calculation work is needed. 



 

ACCURACY OF PROPOSED FORMULA  
The accuracies of the proposed 
strength formula and Yura’s formula 
were examined by comparing elastic 
finite element buckling analysis (i.e., 
eigenvalue analysis). Note that the 
comparisons made here is on elastic 
buckling strength, and the inelastic 
strength will be discussed later in 
this paper. Figure 7 shows a finite 
element (FE) model of simply 
supported I-shaped beam with end 
moments and shearing forces with 
the top flange continuously 
restrained horizontally at the middle 
of the flange. Variables considered in 
the analyses included the beam end 
support condition for LTB, beam size, 
beam length bL , and moment 
gradient defined by β . There were 
two end restraint conditions: one is 
torsional simple support (only sway is 
restrained) and another is torsional 
fixed support (both sway and warping 
are prevented). These end restraint 
conditions were made possible by 
discrete restraints given at the 
centroids of the sections and rigid-bar addition along the sections at the beam ends. Note that 
as mentioned previously, the fixed support case may correspond to the experiments conducted 
in this study. The beam sizes considered here is shown in Table 4. Three types of beams with 
different widths and depths were taken into consideration. The beam length bL  was varied such 
that HLb /  ( H is the beam depth) changes from 6 to 100 at an interval of 2. Four types of 
moment gradients were also considered by taking β equal to 0, 1, 2, and 3. In these moment 
gradients, β = 2 corresponds to an equal end moment and a double curvature bending case 
that is typically seen in seismic design. By combining all the variables, more than 500 cases of 
buckling analyses were carried out to obtain a database for the critical buckling strengths FEMM . 

Figure 8 shows comparisons between the FE analyses and the proposed formula given by Eqn. 
(13). Both simple and fixed cases are shown in Figure 8 (a) and (b), respectively. In the figure, 
the horizontal axis represents the non-dimensional slenderness ratio defined by */ crp MM , 
where pM  is the plastic moment strength and *

crM  is the calculated buckling strength given by 
Eqn. (13). Yield strength of the steel beams was assumed to be 325=yF N/mm2. On one hand, 
the vertical axis shows the ratio of calculated strength to plastic moment strength for the FE 
analysis and the proposed formula. The ratios for the FE results and the proposed formula are 
expressed as pFEM MM /  and pcr MM /*  and are shown in the graphs with a small circles and a 
broken line, respectively. When both circles and line are closely situated, it indicates that the 
proposed formula has good accuracy. Keeping in mind this basis for evaluation, the proposed 
formula provides good overall strength estimates. Note that in Figure 8 (a), there is some scatter 
in the smaller */ crp MM  region. This is possibly caused by LTB and web shear buckling 
interaction, which was not directly considered in the proposed formula. 

Table 4 – Beam sizes considered in the analyses 

 

Beam type Depth (mm) Width (mm)
Web

thickness
(mm)

Flange
thickness

(mm)

Case 1 400 400 13 21
Case 2 588 300 12 20

Case 3 600 200 11 17

 
Fig. 7 – Finite element analysis model 
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(a) Torsional simple support (b) Torsional fixed support 

Fig. 8 – Comparisons between proposed formula and FE analyses 
 

  
(a) Torsional simple support (b) Torsional fixed support 

Fig. 9 – Comparison between AISC formula (Yura’s formula) and FE analyses 

On the other hand, regarding the AISC formula (Yura’s formula) given in Eqn. (1), comparisons 
with the FE analyses are made in Figure 9. Note that Yura’s formula was provided primarily for 
torsional simple support condition, but in this comparison, an effective length factor of 0.5 was 
applied as an attempt to the torsional fixed support case. Overall, Yura’s formula provided 
conservative strength estimates, but relatively wider scatter was observed for some cases. 
Although relatively good approximation was provided for uniform bending moment cases, larger 
scatter was found especially in the cases where the moment gradient was larger (i.e., β  was 
larger), the depth of the steel beam became smaller, and the length of the beam was longer. It 
is interesting to note that smaller depth and larger length conditions corresponded to the cases 
where uniform torsion resistant became dominant in comparison with warping torsion resistance. 
The larger scatter might be caused by the fact that Yura’s formula was approximate based on 
limited numerical solutions. It should be noted that Yura’s formula slightly overestimated the 
cases with β = 3, the largest moment gradient in the calculations. Overall, Figures 8 and 9 show 
that the proposed formula provided better accuracy than Yura’s formula. 

 

 



 

COMPARISON BETWEEN PROPOSED FORMULA AND EXPERIMENTAL RESULTS 
Since the proposed LTB formula only provided elastic strength, design equations (mapping 
functions) were needed to consider the effects of inelastic behavior and initial imperfections. 
Generally, such equations are described as functions of plastic moment, elastic buckling 
strength and slenderness ratio. In the AISC specification, which is the most widely recognized 
formula, the unbraced length bL  was used to represent the slenderness ratio. In the proposed 
buckling formula, however, one might notice that the elastic buckling strength *

crM  was not 
explicitly expressed as a function of bL . Therefore, the AISC design equations cannot directly 
be used for the proposed formula. Based on a Japanese design standard, the following 
equations were proposed as functions of non-dimensional slenderness ratio */ crpb MM=λ : 

 (a) When bλ  ≤ pλ :  

 pn MM =*          (30) 

 (b) When pλ  < bλ  ≤ eλ : 
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 where 

   *
crpb MM=λ ,  6.01=eλ ,  6.0=pλ           (32), (33), (34) 

 (c) When bλ  > eλ : 

   **
crn MM =          (35) 

In the above equations, *
nM  is the design buckling strength considering the inelastic behavior of 

the beam. pλ  is the slenderness ratio where *
nM  reaches pM , and eλ  is the ratio of a transition 

point between elastic and inelastic buckling. The value of 0.6 for pλ  was assumed on the basis 
of material and geometrical non-linear buckling analyses separately conducted. 

Figure 10 shows a comparison between the experimental data and the design equations given 
in Eqns. (30) through (35). The horizontal axis represents the non-dimensional slenderness ratio, 
where *

crM  is given by the proposed formula of Eqn. (13). The vertical axis represents the 
strength normalized by plastic moment, where the strength is given by the experiments or the 
above equations. In Figure 10, elastic buckling 
strength shown in Eqn. (13) is also indicated as 
a reference. In calculating *

crM , the fixed support 
condition was applied by using Table 3 and the 
moment gradient parameter β  was assumed to 
be 2, corresponding to a double curvature and 
an equal end moment condition. Note that 
setting an appropriate β  is relatively difficult 
because of the beam composite action seen in 
positive bending. Based on the calculated 
stresses of the bottom flanges at both ends of 
the composite beam, 2=β was approximately 
assumed for a comparison with the experiments. 

As seen in the figure, the design equations are 
on the safe side against the experimental results, 
providing with relatively good estimates for 

 
Fig. 10 – Accuracy of the proposed formula 
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Specimens No. 1 and No. 2, and with a conservative estimate for Specimen No. 3. This 
conservative estimate may be explained possibly by the following two reasons: One is an 
additional effect from the rotational restraint at the top of the flange. As seen in Figure 6, the 
rotational restraint was conservatively neglected in the model. The other is the moment gradient 
definition for a composite beam. As stated previously, β = 2 was assumed in calculating *

crM , 
but the actual gradient subjected to the steel beam might become larger, resulting in some 
strength increase. Note that the AISC (Yura’s) formula is not shown together in Figure 10, 
because the torsional fixed support condition seemed to be out of scope for the AISC design 
equations. Therefore, a comparison of elastic 
buckling strength with the same end condition and 
moment gradient as those in Figure 10 was made in 
Table 5 between Yura’s and the proposed formulae. 
Yura’s formula provided conservative elastic 
strength estimates. 

 
CONCLUSIONS 
This study aimed to clarify the behavior and design of LTB of an I-shaped steel beam with the 
top flange continuously restrained laterally using a reinforced concrete floor slab and headed 
studs. Three sub-assemblage specimens having different flange widths were first tested under 
horizontal loading applied to the columns. The loading condition was reverse curvature and 
equal end moment, which is typically seen in seismic design. Through the experiments, it was 
shown that the floor slab effectively restrained the flexural-torsional buckling for all the cases. 
An elastic buckling strength formula was then derived for the restrained steel beam based on an 
energy approach. New displacement functions were introduced so that a closed-form formula 
was made possible. In comparison with finite element analyses, the accuracy of the proposed 
formula together with that of the existing AISC formula (Yura’s formula) was examined. The 
comparisons indicated that the proposed formula provided good accuracy while the existing 
AISC formula had a relatively large scatter for some cases. Finally, the proposed formula was 
compared with experimental results. In doing so, new design equations to consider the inelastic 
effect were proposed. The comparison showed that the proposed equations provided 
reasonably accurate and conservative strength estimates to the experimental results. 
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Table 5 – Accuracy of Yura’s formula 

 

Yura's Proposed
Mcr  /Mp M* cr  /Mp

No.1 3.26 3.84
No.2 1.89 2.18

No.3 0.63 0.68

Specimen no.
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